Towards Quantitative First-Principles Models for Intrinsic Rotation in Axisymmetric Devices

T. Stoltzfus-Dueck Princeton Plasma Physics Laboratory

US TTF 2018

May 11, 2017 San Diego, CA

Outline

- Motivation and overview
 - Rotation peaking and nondiffusive momentum flux
- Edge rotation
 - Orbit-loss and transport-driven SOL flows
 - Simple kinetic-transport model and experimental tests
 - Open questions
- Core rotation
 - Complicated dependence on experimental parameters
 - Radially local: symmetry and symmetry-breaking
 - Radially global: simulations, results, and open questions

Motivation

- ► Future tokamaks will have relatively little applied torque (NBI→fusion).
- Zero or low rotation can cause instabilities that make the plasma disrupt.
- ▶ Luckily, plasmas rotate without applied torque—"intrinsic rotation."
- ▶ We need to understand what determines intrinsic rotation profiles as part of identifying safe operating regimes for ITER or a future fusion plant.

DIII-D, Grierson:

Tokamak plasmas rotate spontaneously without applied torque.

Stoltzfus-Dueck PoP '15

JET ICRH shots ($I_p \approx 1.5$, 2.6MA) Eriksson PPCF '09

Typical intrinsic rotation profiles have three regions:

- ► Edge: Co-rotating and (roughly) understood
- ► Mid-radius "gradient region": Hollow or ~flat
 - Rotation often passes through zero at mid-radius. (Could be bad!)
 - ► Gradient exhibits sudden "reversals" at critical parameter values.
- ▶ Sawtoothing region inside q = 1: Flat or weak cocurrent peaking In axisymmetric geometry, neoclassical momentum transport is negligible.

$$T = \Pi = -v\nabla L \implies \nabla L = -T/v$$

$$0 = \Pi = -v\nabla L \Longrightarrow \nabla L = 0/v$$

$$0 = \Pi = -v\nabla L + \Pi^{\text{res}} \Longrightarrow \nabla L = \Pi^{\text{res}}/v$$

$$0 = \Pi = -v\nabla L + \Pi^{\text{res}} \Longrightarrow \nabla L = \Pi^{\text{res}}/v$$

nontrivial intrinsic rotation⇔nondiffusive ∏

C-Mod L-mode measurements suggest transport-driven flows.

L-mode toroidal rotation on C-mod : strong dependence on LSN vs USN. Not only SOL rotation, but also in the core!

Motivated consideration of outboard-ballooning transport-driven flows. This rotation shift (LSN vs USN) not observed in H-mode.

Co-current rotation at LCFS suggests ion orbit loss.

Co-current rotation "hump" near LCFS deGrassie NF '09

Orbit excursions lead to co-current rotation at outboard midplane

Co-current rotation feature \sim ubiquitous at outboard LCFS. [Counter-current feature seen at inboard LCFS, Pütterich et al NF '12] Suggests ion orbit excursions: "orbit loss", Pfirsch-Schlüter, etc. But does this effect penetrate into the plasma?

A simple kinetic transport theory for edge intrinsic rotation.

$$\partial_t f_i + v_{\parallel} \partial_{\theta} f_i - \delta v_{\parallel}^2 (\sin \theta) \partial_r f_i - \partial_r [D(r, \theta) \partial_r f_i] = 0$$

Extremely simple kinetic transport model contains only:

- $\begin{array}{ccc}
 & & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & &$
- ► Free flow along the magnetic field
- ► Radially-directed curvature drift

- Two-region geometry
 - **Confined edge:** periodic in θ
 - SOL: pure outflow to divertor legs

After some variable transforms, obtain steady-state equation

$$\partial_{\bar{\theta}} f_i = D_{\mathrm{eff}} \left(v_{\parallel} \right) \partial_{\bar{r}} \left(e^{-\bar{r}} \partial_{\bar{r}} f_i \right),$$

in which $D_{\rm eff}$ depends on the sign of v_{\parallel} . Stoltzfus-Dueck PRL '12

Model: ion drift orbits + spatially varying $D \Rightarrow$ edge intrinsic

Edge

Tested model with dedicated scan and database analysis.

Concrete rotation prediction depends on \bar{R}_X .

- ► TCV: Ohmic L-mode, scan X-point position:
 - edge rotation shifts as expected.
- ▶ DIII-D: database over various L- and H-modes
 - had to account for NBI torque
- ▶ D↔C rotation shift is not small in the edge
 - Main-ion measurements are helpful.

Top L and R: TCV, Stoltzfus-Dueck PRL '15 Bottom R: DIII-D L- and H-modes, Ashourvan APS '17

There are many open questions for edge intrinsic rotation.

The kinetic-transport model omits a lot of physics, including:

- Neutrals
 - possibly relevant for USN-LSN asymmetry in L-mode
 - some work on neutrals alone, but not much with neutrals and turbulence

Edge

- ► ELMs & MHD
 - Large ELMs sometimes appear to lock in outer edge
 - Active MHD affects rotation, was excluded from tests
- 3D fields
 - ▶ toroidally asymmetric **B** can exert a strong neoclassical torque
 - calculated with codes like GPEC and IPEC
 - but rotation prediction needs both 3D torque and turbulence
- ▶ Turbulent parallel acceleration (probably small, because $k_{\parallel}L_{\perp} \ll 1$)
- Trapping (maybe small, passing-ions carry most of the momentum)
- Collisions (relevant normalized collisionality actually larger on ITER)
- ▶ Radial currents in SOL (can exert $j \times B$ torque)

The core rotation gradient exhibits rich and varied behavior.

C-mod Ohmic L-modes ($n_e \approx$ 0.7,0.8 \times 10²⁰m⁻³) DIII-D L- & Ohmic & ECH H-modes Rice NF '13 deGrassie PoP '07

A key quantity: normalized rotation gradient $u' = -(R/v_{ti})\partial_r v_{\phi}$

- ▶ Usually either $u' \sim 0$ (flat) or u' < 0 (hollow) at mid-radius
- ► Complicated parameter dependence, many experimental observations
 - ▶ density or v_{*e} : low \leftrightarrow flat, intermediate \leftrightarrow hollow, high \leftrightarrow flat
 - ► ECRH often causes hollow (AUG, DIII-D), but sometimes flat (KSTAR)
 - q profile: e.g. u' < 0 seen for q < 3 on KSTAR, q < 3/2 on C-mod

Candidates: ITG/TEM, ∇n_e , \tilde{n}_e , LOC/SOC, ITB

Many experiments find u' depends on electron collisionality.

Physically, at least two distinct effects of v_{*e} :

- ▶ affects trapped electrons, stabilizes collisionless TEMs
- ▶ if electron-heated: transfer energy to ions, Q_i ↑

AUG Ohmic L-modes McDermott NF '13

0.1

10

Many theoretical candidates, viewed through two frameworks.

In core orderings, many intrinsic rotation mechanisms are similarly sized.

- ▶ Unlike the edge, where $k_{\parallel}L_{\perp}\ll 1$ implies orbit-width-effects are largest.
- ► Challenging to differentiate between possible mechanisms.

Two dominant gyrokinetic frameworks to evaluate them:

- lacktriangle Radially local fluxtube $(
 ho_* \ll 1)$
 - delta-f gyrokinetics expanded about a single flux tube
 - ▶ symmetry principle⇒most leading-order momentum-flux terms zero
 - other mechanisms do come in at higher order
 - easy to include or exclude specific effects
 - not naturally include profile curvature, intensity gradient,...
- Radially global
 - no symmetry principle (a plus and a minus)
 - automatically retains some terms that are higher-order in a fluxtube
 - naturally retains profile effects
 - ▶ full-*F* and delta-*f* versions, and subvariants
 - choices of radial boundary conditions and profile maintenance

Fluxtube: Symmetry restricts contributions to residual stress.

In the simplest radially local fluxtube limit with

- up-down symmetric magnetic geometry,
- no background rotation or rotation shear, and
- no background *E* × *B* shear,

the delta-f gyrokinetic equations satisfy a symmetry $[y \propto (\zeta - q\theta), s \propto \theta]$:

If
$$f(x,y,s,v_{\parallel},\mu,t),\;\phi(x,y,s,t) \qquad \text{is a solution}$$
 so is
$$-f(-x,y,-s,-v_{\parallel},\mu,t),\;-\phi(-x,y,-s,\phi,t)$$

with opposite sign of the dominant toroidal momentum flux. (Peeters and Angioni PoP '05, Parra et al PoP '11)

This implies: toroidal momentum flux should vanish for terms that flip sign, but does *not* imply that invariant terms *must* drive momentum flux.

What drives symmetry-breaking and momentum flux, in the absence of rotation and of rotation shear?

Symmetry-breaking mechanisms in the fluxtube

Violate assumptions of symmetry argument:

- lacktriangle Background $m{E} imes m{B}$ shear (Dominguez and Staebler Phys. Fluids B '93)
- ▶ Pinch, $\Pi \propto v_{\varphi}$ (Peeters PRL '07, Hahm PoP '07)
- ▶ Up-down asymmetric **B** (Camenen PRL '09)

Higher-order terms, including mocked-up global:

- ▶ Intensity gradient (Gürcan PoP '10)
- ► Geometrical corrections to drifts (Sung '13, Stoltzfus-Dueck" 17)
- Corrections to fluxtube gyrokinetics (Parra and Barnes PPCF '15)
 - Neoclassical perturbation to turb mom transport (v_{*i})
 - Turbulence inhomogeneity & finite orbit widths

Other Papers

▶ Reformulation in terms of wave momentum (Diamond PoP '08)

But predicted rotation gradients usually smaller than experimental levels. e.g. figure, from Hornsby NF '17

Radially global delta-f simulations of momentum flux

Delta-*f* , generalized with profile effects:

- Profile maintenance or relaxation?
- With or without neoclassical terms?
- Radial boundary conditions, usu Dirichlet
 - Typically get S-shaped rotation profiles

Rotation results:

- ► Can observe ~large-enough rotation gradient
 - ▶ e.g. GTS↔DIII-D (top, Grierson PRL '17)
- ▶ from $\mathbf{E} \times \mathbf{B}$ shear, pinch, profiles (Waltz PoP '11)
- ▶ Role of magnetic shear (Wang PoP '10, Lu NF '15)
- ▶ Role of profile curvature (bot, Hornsby NF '18)
- ▶ Do the momentum fluxes scale linearly in small ρ_* ?
 - ▶ Yes: GYRO, adiabatic-elec GKW
 - ▶ No: kinetic-electron GKW (but profile relaxation)

Radially global full-F simulations of momentum flux

Full-F treatments:

- ▶ No symmetry principle, retain profile effects
- ▶ Source or profile relaxation? Usually source.
- ▶ Boundary conditions: usually toroidal annulus
- Expensive: usually run adiabatic-electron ITG
- ▶ Bursty or avalanche-like transport (Ku NF'12⇒)

Momentum observations

- ► Typically co-current rotation (e.g. Ku NF '12)
- ightharpoonup Still RS from intensity gradient and $extbf{\textit{E}} imes extbf{\textit{B}}$ shear
- ightharpoonup Barely-passing ions carry most of Π (Sarazin NF '11)
- ► Sometimes significant Π advected by curvature drift (Abiteboul PoP '11, Idomura PoP '14⇒)
- ► GT5D, hybrid electrons: П flips sign ITG/TEM (Idomura PoP '17)

0.2 0.4

0.8

Summary

- ► Future tokamaks like ITER will run at low relative torque.
 - ▶ Need to avoid zero- or low-rotation regimes that can cause disruptions.
- ► Tokamaks rotate 'intrinsically'—without applied torque
 - ▶ Need a nondiffusive momentum flux to cause rotation gradient.
- Edge rotation: co-current, affected by SOL
 - Kinetic transport model (intensity gradient, orbit loss, SOL flows)
 - ▶ But many open topics (neutrals, radial SOL current,...)
- Core: flat or hollow, many contending models
 - measured ∇v_{φ} depends on many factors including v_{*e}
 - ▶ Sudden transitions of ∇v_{φ} between negative and \sim 0: "reversals"
 - Fluxtube:
 - Symmetry argument restricts possibilities
 - ▶ Many models developed, predicted ∇v_{ϕ} a bit small
 - Global simulations
 - Unrestricted by symmetry argument
 - Varied observations, including experimentally relevant $|\nabla v_{\omega}|$
- ► Much exciting work remains, including
 - more detailed and quantitative theory-expt, in core and edge
 - reconcile global and local results (e.g. Lu et al PoP '17)